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Accurate Boundary Conditions for Exterior Problems 
in Gas Dynamics 

By Thomas Hagstrom*and S. I. Hariharan** 

Abstract. The numerical solution of exterior problems is typically accomplished by 
introducing an artificial, far field boundary and solving the equations on a truncated 
domain. For hyperbolic systems, boundary conditions at this boundary are often derived 
by imposing a principle of no reflection. However, waves with spherical symmetry in 
gas dynamics satisfy equations where incoming and outgoing Riemann variables are 
coupled. This suggests that 'natural' reflections may be important. We propose a 
reflecting boundary condition based on an asymptotic solution of the far field equations. 
We obtain nonlinear energy estimates for the truncated problem and present numerical 
experiments to validate our theory. 

1. Introduction. Interesting and important problems in gas dynamics are 
often posed in exterior domains. Examples include the explosion of gas bubbles 
in various media and flows external to aircraft. An approach to the numerical 
solution of such problems is to restrict the computational domain to a finite region 
through the introduction of an artificial boundary. For large time computations 
interactions between the solution and the artificial boundary can strongly influence 
the results. The focus of this paper is the development of an accurate treatment of 
these conditions. 

A variety of authors have invoked a principle of no reflection. Notable among 
these are Engquist and Majda [2] who studied the general linear case and Hedstrom 
[8] and Thompson [10] who considered nonlinear hyperbolic systems. However, as 
pointed out by Gustafsson and Kreiss [3], conditions satisfied by the exact solu- 
tion may involve reflections. The current study involves spherical waves which 
exhibit coupling between incoming and outgoing Riemann variables. One expects 
this coupling to result in natural reflections which should be accounted for in an 
efficient numerical treatment. Indeed, Thompson [10] documents the disappointing 
performance of nonreflecting conditions in such cases. 

An alternate approach is to incorporate the asymptotic behavior of the solution 
in the far field. Conditions for linear problems based on far field asymptotics have 
been sucessfully employed by Bayliss and Turkel [1] and Hariharan and Bayliss 
[7]. Our procedure is to develop approximate solutions to the appropriate weakly 
nonlinear initial-boundary value problem in the region exterior to the computational 
domain. A condition is thus obtained which includes appropriate reflections at 
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the computational boundary. Conditions involving incoming waves generated by 
inhomogeneities in the discarded region have also been proposed by Gustafsson [4], 

[5]. 
The particular equations under consideration are the Euler equations for spher- 

ically symmetric, isentropic fluid flow: 

O9p O (z _ 2z 
(1.1) At +9r r 

(1.2) + - -+ (P)= -2-. 
at ar [p pr 

Here, p is the density, z is the momentum and f (p) is the pressure. Initial conditions 
are 

(1.3) p(r,0) = po(r) and z(r,0) = zo(r), r > ro. 

We also assume that the computational boundary is located at r = L (L > ro) and 
that proper conditions at ro are specified. Finally, we assume that 

(1.4) po(r) = pOO and zo(r) = 0, r > L. 

The plan of this paper is as follows: In Section 2 we follow the construction 
presented by Whitham [11] to obtain asymptotic solutions in the far field and 
derive the boundary conditions. Nonlinear energy estimates are established for 
the resulting finite domain problem in Section 3. Section 4 contains a discussion 
of the numerical treatment of the boundary conditions. In Section 5 numerical 
experiments are presented for an idealized weak explosion problem. Our technique 
is shown to yield the correct steady state for values of L significantly smaller than 
those required by the nonreflecting conditions. In the final section we propose 
extensions of our conditions for the truly three-dimensional case. 

2. Derivation of Asymptotic Boundary Conditions. We find it convenient 
to work with equations involving Riemann variables. They are 

(2.1) R = - + G(p)l 
p 

(2.2) S = - - G(p). 
p 

Here, 

(2.3) G(p) = f \ dp. 

Then Eqs. (1.1) and (1.2) take the form 

(24) O~~~R (z OR _ 2 Vf'1 (p) z 
(2.4) ,9 + (p + )"' ar o 

-+ P+ Pj r pr 

(2.5) aS0 ( z f S 2(/f f(p)z 
p kP)Jar pr 

Here we assume that for r > L, 

f'(p)> Z. 
p 
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That is, the flow is subsonic in the far field. Then R and S are, respectively, 
the outgoing and incoming Riemann variables. Note that the lower-order terms 
couple the equations for the Riemann variables. This means that an outgoing wave 
generates an incoming wave. 

To derive the boundary conditions, we consider the initial-boundary value prob- 
lem (2.4), (2.5) and (1.4) on the exterior domain r > L with boundary condition 

(2.6) R(L, t) = g(t). 

Solving this problem yields 

(2.7) S(L, t) =[9(.)] 

That is the incoming variable is a functional of the outgoing variable. 
Equations (2.6) and (2.7) represent an exact boundary condition at r = L. 

However, the explicit form of the functional - is not known in general. Therefore, 
we construct an asymptotic solution of the exterior problem valid for L sufficiently 
large. (Similar constructions for steady state problems can be found in Hagstrom 
and Keller [6].) Consistent with the known far field behavior of solutions of the 
linearized equations, we expand R and S as follows: 

(2.8) R(r, t) =Ro + Ri (r, t) + R2(rt) 
r r 

(2.9) S(r, t) =So+ Si (r,t) S2 (r, t)+ r r2 

We note that 

(2.10) Ro = -So = G(poo). 

We further assume 

(2.11) g(t) = Ro + H(t) 

for some function H(t). 
Equations for R1 and Si are given by 

(2.12) OR ( ? S + + +P (p A)(R. -Si) R1= 0 
+t \2r + 

' 
~o)+P(o) r ar0 

(2.13) as+ s( - 

+ _ P(P ) 
O.Si)) ar 0 

Here, 

P(u) - 4f' (u) 

Following Whitham [11] we have retained 1 corrections to the characteristic speed 
to suppress nonuniformities in the expansion as r approaches infinity. Note that the 
source terms are absent at this order, so R1 and S are Riemann invariants of the 
approximate equations (2.12) and (2.13). Since the characteristics corresponding 
to Si all originate at t = 0, we deduce 

(2.14) S1 (r, t) = 0. 
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That is, we have a simple wave. Now Eq. (2.12) can be solved for R1 using the 
method of characteristics. The differential equations for the characteristics are 
given by 

(2.15) dr [f I(O)+ 2 +P(POO)} ri] 

Using the fact that R1 is constant along the characteristics, we find that 

(2.16) R1 (r, t(r; r)) = H(T), 

(2.17) r -L-B~r)ln B(,r)] 

where we have introduced 

B(T) = H(2) [2 + P(po)] 
Vf '(poo0) 

We remark that this solution may break down where characteristics intersect, in 
which case a shock must be fitted in. In order to compute the first nonvanishing 
correction to the incoming variable, we consider the equation for S2, 

___ f~~f\(P - )Rj ___ 

(2.18) at O+ ( 2 S2 Vf7(p.)Rj (9t ~~r /Or 

To solve Eq. (2.18) we make a change of variables in which S2 is expressed as a 
function of r and r. This yields the above equation in the form 

(2.19) -- ( r D (Tr r ) 
9 

_ -D(r, r) Or2 =R(T), 

which we write as 

(2.20) aS2- N(r, r)D(r, r) aS2 N(r, r)R, (T). 
O9r O9r 

Here, 

[ 1- B' (r) {In [ r+(,)] + (r-L) B(r) } 
N(T, r) = ( 1 B [-)] + 

and 

D(r, r) = 1+ (F 2)H(r) 
Vf '(p~0)r 

Again we solve Eq. (2.20) by the method of characteristics. We integrate from the 
first characteristic, r = 0, where S2 = 0. We will only need to know S2 at the 
boundary r = L. Thus we obtain 

(2.21) S2 (L,) = Rl (s)N(s, (s; T, L)) ds, 

where 

(2.22) de = -ND, (T;r, L) = L. 
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To put Eq. (2.21) in a more convenient form, we differentiate with respect to r: 

a_____ _L &)I N(s, ~(8;r, L)) a~ 
(2.23) r = R1 (r)N(r, L) + R1 (s) L d8. 

Now the integral term is of order 1 due to the presence of ,9N. Therefore we 

neglect it along with L contributions to N. Using fit (Lr) =1, S = So +AS2 and L ar ' ' 
R1 (r) = L(R(L, t) - Ro), we finally obtain 

(2.24) OS _ Vf'(p~o) (R (LI t) - Ro) 
(2.24) at r=L 2L 

Equation (2.24) is the boundary condition we propose. We also note that the 
relationship 

(2.25) - - G(p) = -G poo) + ? 

can be used to derive a number of asymptotically equivalent conditions. For exam- 
ple, 

(2.26) OS zf 
tat Lp 

and 

(2.27) aS - (G (p) - G (poo)) f'(po) 
(2.27) O~ ~ ~~t L 
3. Energy Estimates. We now study the problem on the truncated region 

[ro, L], rewriting the field equations (1.1) and (1.2) in a convenient form. Moreover, 
we take ro = 0 for definiteness. Thus the problem under consideration is 

(3.1) ap+ 1 a 
(r2z) = 0 

O z 1iia 12Z2\ 0 

(3.2) r + r _ + -f f(p)] = O. 

Initial conditions are 

(3.3) p(r,O) = po(r), z(r,O) = zo(r), r > O. 

Our boundary condition at r = L has the integrated form 

z ~t f t 
(3.4) - = G(p) - G(px) + a - ds + /3 (G(p) - G(poo)) ds. 

Corresponding, respectively, to (2.24), (2.26) and (2.27) we have 

(3.5) 2L = a= V15 
0 

(3.6) a L= Vf p00, 

(3.7) cj = 01 A = \/17 Z;W.~00) 
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In addition, we need to introduce a finiteness condition at r = 0, owing to the 
singularity of the equations (3.1) and (3.2). This is accomplished by demanding 

(3.8) z(r,t) -* as r - 0. 

It is difficult to establish the well-posedness of initial-boundary value problems 
for nonlinear hyperbolic systems. We content ourselves with the derivation of 
bounds on the growth of the total energy of the system. The (physical) energy 
density is defined by 

1 z2 
(3.9) E= --+ pe(p), 

where the internal energy e satisfies 

(3.10) e'(p) -f (P). 

We also define 

(3.11) q = VE. 

Here the gradient is with respect to the variables p and z. Then 

(3.12) (1 + I Z 

Taking the inner product of (3.1) and (3.2) with q, we obtain 

(3.13) A + T 0r 

where 

T-[r2z (e(p) + f())] 2 . 

Now integrating (3.13) over [0, L] with the weight r2 we obtain 

(3.14) (D (t) + TIoL = ?1 

where 

rL 

(3.15) 4(t) f r2Edr, 

which is the total energy of the system. It is useful to rewrite T: 

(3.16) =r2- [pe + f + - 

Clearly, (3.8) implies that I = 0 ar r = 0, leaving us with 

(3.17) V'(t) = -T(L, z(L, t), p(L, t)). 

We now state the main theorem of this section. 
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THEOREM 1. There exists a bounded function r(t), depending only on f and 
pO,, so that the total energy of any generalized solution of (3.1)-(3.4), (3.8) satisfies 

(3.18) ?(t) < (D (0) + r(t). 

Proof. Using Fubini's theorem, it may easily be verified that (3.4) solved for p 
p 

yields 

p(L t) = G(p(L, t)) - G(poo) + (a + 3) j ea(t-8) (G(p(L, s)) - G(pw)) ds. 

Since the bracketed quantity in (3.16) is positive, the right-hand side of (3.17) can 
be positive only if p is negative. As p is nonnegative and G is a nondecreasing p 
function, a positive contribution to the total energy implies 

G(p) < G(poo)(1 + A(t)), p < G-'(G(pw)(1 + A(t))), 

and 

- < G(poo)(1 + A(t)), 
p 

where 
{ (afi) (eat - 1) a 5 0, 

p /t. a=O. 
Substituting these inequalities into (3.17) and integrating from 0 to t immediately 
yields the desired result. If we specialize to the case of a polytropic gas, f (p) = kp", 
we may further conclude that F grows algebraically if (2.27) is employed, and 
exponentially in the other cases. 

4. Numerical Procedure. In this section we briefly discuss a particular nu- 
merical implementation of the boundary conditions we have developed. We note 
that many different, stable implementations are possible. Those we present here 
are used in the numerical experiments which follow. 

Introducing a uniform mesh, 

(4.1) ri = (i- 1) Ar, i = ,... IN + 1 

we denote our approximate solution vector by 

(4.2) t (p(ri, t)) 
kz (ri, t)} 

and also introduce notation for the approximate fluxes and sources: 

(4.3) F(U) = (Z z) 

(4.4) H(U, r) = (2)- 

We employ the two-step Lax-Wendroff method (Sod [9]) in the interior: 

_U+1/2 = +(U +Ui1) - 2'i (F(U:it) - F(Ut)) 
(4.5) AtH(1( t U r/ 
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Uit+At = Uit ~_ A(F( ~+lt/)F(Ut+At/2) 
(4.6) i (FU4i+%/2 ) - -/ 

(+t+At/2 + t+t/2) ri i = 2, .. ., N. 

This is second-order in space and time'for smooth solutions. The boundary condi- 
tions are used to update the solution at the boundaries.- At r = L, our conditions 
(2.24), (2.26), (2.27) are all of the form 

(4.7) S= Q(p' Z). 

A second-order discretization of this is given by 

(4.8) S(UIV++t) = S(UNt1) + S(U~t) - S(Ut+At) + 2AtQ(U+t/2). 

Note that all quantities on the right are available from the interior scheme. Another 
numerical condition is needed. We obtain it from the equation for the outgoing 
characteristic, (2.4). Writing it in the form 

a-t + C (p' Z) o8 = W(pj Z), 

we have the second-order discretization 

(1 + C)R(UTv+At) = R(UK?+l) + R(Ut) - R(UN+At) + w 

- U(R(UN+1) - R(Ut) -R(Ut+At))j 

where 

C N(+112 )Ait 

A~r 
and 

W = 2AtW(U+A)/2). 

These equations yield updates of the Riemann variables at the artificial boundary. 
Equations (2.1) and (2.2) are inverted to update the primitive variables: 

(4.10) p(rN?+l, t + t) = G1 (R ) 

1~~~~ 

(4.11) z(rN+l, t + At) = -p(rN+1, t + AYt)(R + S). 2 

At the origin, continuity of the velocity field requires 

(4.12) z(O, t + LAt) = 0. 

Again, a numerical boundary condition is required which we obtain from the char- 
acteristic equation, (2.5). Writing it in the form 

-- + C(P' z) = W(P' z), 

we use the second-order approximation 

4) (1- C)5(Ut+t) = S(Ut) + S(U2) - S(U2~tt) + W 
(4.13) -1 C(r(U( - S(Uf) + 
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where 
C(U+At/2)zt 

C C= Ar 
and 

W = 2AtW(U +t/2). 

Given S, we can compute p from 

(4.14) p(0, t + At) = G-1 (-S). 

This completes the update of Ut+<t. 

5. Numerical Experiments. Here we present some numerical calculations to 
validate the effectiveness of our boundary conditions. For purposes of comparison 
we include the condition resulting from Thompson [10]. We here list and label the 
different conditions that we have used for the computation. All of them have the 
form 

(5.1) At (- -G(p) =Q 

where 

(HH1) Q = ' (from Eq. (2.26)), 
pL 

(HH2) Q = Vf (Poo) (G(p) - G(poo)) (from Eq. (2.27)), L 

(HH3) Q = 
'(Poo 

(HH3) Q = . 
2L (R(L, t) - G(po)) (from Eq. (2.24)), 

(Th) Q=2z (from Thompson [10]). 
L 

A simple idealized explosion problem is considered in which the density is ini- 
tialized to 

po() 3, r< I 
1or=1 r>1, 

and the momentum is initialized to 

zo(r) =0, 0 < r < L. 

The true solution includes the propagation of a weak, decaying shock with the 
solution on the truncated region eventually approaching the steady state p = 1 
and z = 0. We note that only this steady state is compatible with boundary 
conditions HH2 and HH3. By contrast, HH1 and Th are compatible with steady 
states at any density. In the graphs presented here the momentum and density are 
plotted against r at different time steps. We use a spatial mesh width of Ar = .05 
and a time step chosen so that the CFL number corresponding to sound speed of 
the compressed gas, /f(3), is .25. In the first case considered here the far field 
boundary is located at 5 (L = 5). Figures 1-4 (a) show, at time steps 400, 600, 
800 and 1000, respectively, the results obtained from th~e computations using the 
condition HH1. Similarly for conditions HH2, 11H3 and Th the results are reported 
in Figures 1-4 (b)-(d). As can be seen in the figures, the solutions are initially 
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(a) me400M -HHi (b) fnm-400-Method-HH2 
1.2 Isa dI sI nA.2 ..w..|~|l|axI n 

1.0 1.0 

08 - 08 I- ~ ''' 

.2 - .2 - 

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

distmd.. 

( C) 11meXOOod4IH3 ( d) 11e400.M.Ioxd.T 
1.2 

, C ? # .,0g & w , H, 
.... 1.2 

.. (,d )gg 

1.0 1.0 

.8 >: t w'\- 8- 

16 6 

-A.4 

.A{ 
, , ... ...., i.,.*.... -A ... ......... *9 s, 

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 

dimme. ~~~~~~~~~~~~dis=. 

FIGURE 1 

Solutions on the long interval, time = 400. 
Solid line: density 
Dashed line: momentum 

qualitatively the same for each boundary condition. For longer times, however, 
marked differences in the solutions appear. All approached a steady state. As 
discussed above, this is necessarily the correct steady state for HH2 and HH3. For 
HH1 the final density was roughly .993, an error of about .7%. For Th it was .984, 
an error of 1.6%. 

The contrasting results are accentuated by further contraction of the computa- 
tional domain. Figures 5 and 6 show the results obtained for L = 2.5 employing 
boundary conditions HH3 and Th, respectively. Even at time 400, the results ob- 
tained with the nonreflecting condition are seen to be significantly in error, while 
those obtained with our asymptotic condition are not. Again, the steady state den- 
sity found using HH3 is correct while that found using Th is off by about 12.5%. 

It is worthwhile to note the significant fluctuations in the variables which occur 
near the origin. We believe this is a natural consequence of the focussing of incoming 
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(a) ti-600-Method-HH1 (b) Time-600-Method-HH2 

1.2 ....E|& .. . . .. . . ,WB~ ~ l~~}.2... g 1o .2gll?s|||| 
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l 
.6 

4 A 
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-.2 2 

-A -A 
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dijs ditsn 

2......( 
C ) lwum-00Meftd-HH3 12( d) nmme6md-rn 

1.0 1.0 

.8~~~~~~~~~~~~~~~~~~~~~~~~. 
.6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.6 

A ~~~~A 
.2 .2 - 

0?. \\0 

-.2 -.2 

-A . . -A .. . . 

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

disuance dance. 

FIGURE 2 

Solutions on the long interval, time = 600. 
Solid line: density 
Dashed line: momentum 

spherical waves. The diminished amplitude of these fluctuations resulting from Th 
on the smallest domain is evidence of its inaccurate representation of the transient 
solution. That is, some physical, incoming waves were not generated. 

Computations were performed on a Sun Microsystem 3/260 with a floating-point 
accelerator. It took about 56 seconds of cpu time for the first case (L = 5) and 30 
seconds for the second case (L = 2.5). In each case the total number of time steps 
was 2000. 

In conclusion, we have established the accuracy of our reflecting condition even 
when implemented on a domain of modest size. Such ideas become crucial in 
truly multidimensional computations. Though we have-not performed any such 
computations, we present ideas in the next section for the generalization of our 
boundary conditions to nonsymmetric problems. 
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(a) r-8l0-Boo ,-HH1 (b) Tumw0oo-Method-HH2 
. 1. 

1.0 1.0 

.8 .8 

.6 .6 

.A 

.2?8 .2 

0 0 
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dispute. distun 

(c) rumsoMesbod-HH3 (d) munm40ooMer-d-T 

1 ..... ... 1.2 1... 

1.0 1.0 

.6 . 

.2 ~~~~~~~~~~~~~~~8.2- 

0 ?0 

-.2 2 

-A 
. . . . .... . . .. ..4. . . . . . 

-A 
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0 .5 1.0 1.5 2.0 2.5 2.0 3.5 4.0 4.5 5.0 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

disume. disuce. 

FIGURE 3 
Solutions on the long interval, time = 800. 
Solid line: density 
Dashed line: momentum 

6. Generalizations to Nonsymmetric Flows. We now consider the Euler 
equations in spherical coordinates for nonsymmetric, isentropic flows. The new 
dependent variables are taken to be the angular momenta, m and q: 

ap 8z 1 am 1 0 q 
(6.1) Op O l +i I. Oq 

at O ar r 80 0 sin 0 =0 

Oz 0 z 2 , 1 a /mzz 1O lqz\ 

Om 0 (mz\ 10/r2 1 0 (mq\ 
(6.3) r+ + 

K7 + p +rsins 7 =g3 

(6.4) -~ -E + E30 ( + () + rsn 3f ( p) 943 
(6.4) Oq + 0 qz 190 qm + 1 0 (q2 ) 
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(a) rime-1ooo-Method-0 (b) 1ime-1000-Method-HH2 
1. 2 VXfi|BXtI . .2r.. 1.2X .........|lX.rg 

1.0 1.0 
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.6 .6 

A A 
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du. dis . 

(c) Timo1000 Meahod-HH3 (d) rTmS-1o00oo-mad. 
1.; .. ...................... 1ww l-t .2 .............. ~ lw ~ sl ..... 

1.0 1.0 

.6 . 6 

AAA 

8 .2 8 .2 

0??0 

-.2 ..2 

-A .. .. .. ... .. .. ... .. ... .. ..-A .. ... . . .. . 

0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

FIGURE 4 
Solutions on the long interval, time = 1000. 
Solid line: density 
Dashed line: momentum 

where we have introduced, 

_ 2z M cotO0 

r r 
2z 2 - m 2 _ q 2 MzcotO0 

92=- - ___ _ 

pr pr 
_ 3mz cot0 (in2 

, 93.- -.- _ 
pr pr 

3qz 2qm cotO0 
94 -= - - _ _ _ _ 

pr pr 

We again consider a domain exterior to a compact body and assume the initial 
conditions satisfy p = pd and z = m = q = 0 for r > L. Following the construction 
of Section 2, we work with the symmetric Riemann variables, R and t, as well as 
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TrnnA00-Mtbiod-HH3 rnneA0o-b* od-M 
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FIGURE 5 

Solutions on the long interval, time = 400,600. 
Solid line: density 
Dashed line: momentum 

the angular momenta. The formal expansions we postulate have the form 

(6.5) R(r, 0, $, t) = Ro + R, (rO , clt) + R2(r,O,ct) 
rr2 

(6.6) S(r, O, q$,t) = SO + S,(r, 0 ,4 t) + S2(r,0,q5,t) 
rr2 

(6.7) m(r,O, ,t)- m2(r,9,cP1t) +m3(r,9,k,t) 

(6.8) q(r, Olqt) 
- q2(r,O, ,t) +q3(r,0,q,t) 

where, borrowing results from the linear case, we assume the angular momenta, 
m and q, are 0(Q) as r -+ oo. The equations for R1,R2,S1 and S2 are taken 



EXTERIOR PROBLEMS IN GAS DYNAMICS 595 

FIGURE 6 
Solutions on the long interval, time = 800, 2000. 
Solid line: density 
Dashed line: momentum 

unchanged from Section 2. This involves the neglect of lower-order terms involving 
0 and q derivatives. Although not entirely consistent with our inclusion of lower- 
order terms involving A, this is justified by the expectation that the primary 
direction of propagation in the far field is the radial one. Expressions for the first 
corrections may then be copied from (2.14), (2.16) and (2.17): 

(6.9) Si (r, 0, k, t) = 0, 

(6.10) R, (r, 0, 0, t(r, 0, A, r)) =H(0,Ad) 

(6.11) t (r, 0, +)r-L-B(Oib, r)ln[ Li T)) ] 
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More importantly, the boundary conditions (2.24), (2.26) and (2.27) are unchanged. 
Equations for m2 and q2 are: 

Dm2 Z1 Dm2 a Pi 
(6.12) + z m + P(P )0P = 0 

at rpoo Dr +f (9)0=0 

(6.13) Dq2 + z1 Dq2 + P(Poo) OPi 0 
At rpoo Dr sin 0 Dq0 

Here, 
p.R _ p00H 

1 2 2 
and 

po~oR, pco H 
P1= 

20 f(poo) 2 Vf'(p00) 
We include the - term so that characteristics can be computed. In particular, at a r 
point of outflow, z1 > 0, no boundary condition for m2 and q2 is required. At inflow 
we may simply use (6.12) and (6.13) without the r derivative terms to update the 
angular momenta. In summary we have: 

( f'(p )(R(L,0,q5,t)-Ro) or 
2L 

(6.14) as (L 0 X t)= z(L,,,t)T(P.) or 
at ~ ~ - Lp(L,0,q5,t) o 

I (G(p(L,0,q , t)-G(p.))) f'(p.) 
L 

and, if z(L, 0, O, t) < 0, 

(6.15) am (La 0, Olt) a [f (p(L, 0, , t))], 

(6.16) aq (L, 0, 1, t) 1 , 9[f (p(L, 0, O, t))]. at r2 ~~sinoaq!9 
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